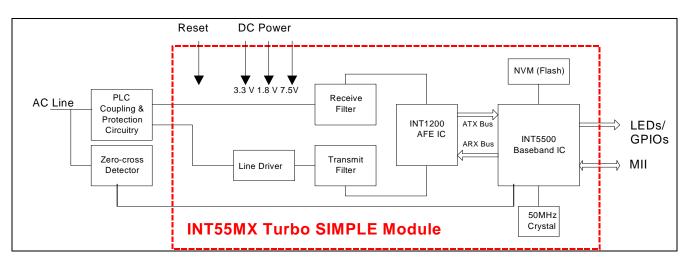


INT55MX Turbo SIMPLE™ Module


Features

- Based on Intellon's Turbo INT5500CS chipset providing up to 85Mbps data rate on the powerline
- Fully integrated HomePlugTM powerline networking controller with integrated MII (MAC or PHY mode) interfaces
- Fully compatible with the *HomePlug 1.0* standard
- Modular approach with complete collateral allows device manufacturers to buy or build
- Simplifies development cycle, assembly, testing, and certification approvals
- Flash programming via host interface supports ease of manufacture and firmware upgradability
- Upgrade path to future High Speed HomePlug AV SIMPLE modules
- 40-pin low power consumption package

Applications

- Audio and Video distribution
- IPTV Gateways and set-top boxes
- Wall powerline adapters such as Ethernet and Wireless Access Point
- Embedded applications with AC and DC cords such as routers, cable modems, ADSL2+ gateways/ modems, MP3 players and boom boxes
- Broadband Internet, PC file and application sharing
- IP security camera
- Networked gaming
- Expanding the coverage of Wireless LANs

INT55MX Turbo SIMPLE Module Block Diagram

HomePlug[®] 1.0 with Turbo 85 Mbps PHY

InTellon

CONTENTS

1.	Introduction	.3
2.	INT55MX Simple Module Pin I/O	. 4
2.1.	MII PHY Option	. 6
2.2.	Pin Descriptions by Group	. 7
2.3.		
2.4.	Pin Descriptions by Group	10
3.	INT55MX SIMPLE Module Specifications1	12
3.1.	Electrical Specifications	12
3.2.	Mechanical Specification	12
4.	INT55MX SIMPLE Module Design Considerations1	
4.1.		
4.2.		
4.3.	Non-Volatile Memory	13
4.4.		
4.5.	Application Specific Hardware Changes	14
4.6.	Regulatory Compliance Considerations	14
5.	INT55MX SIMPLE Module Connector	
5.1.	INT55MX SIMPLE Module Package Specifications1	17
6.	Revision History	18

1. Introduction

Intellon Corporation produces a family of ICs for low-cost, high-speed in-home communications. This family of ICs is supplemented with a line of Single Inline Module devices that incorporate the Intellon Baseband/AFE ICs and required support circuitry to provide a single component solution for the addition of powerline functionality to a product. The SIMPLE TM (Single Inline Module – Power Line Enabled) family is architected so as Intellon introduces new Baseband and AFE ICs, products incorporating Intellon SIMPLE module can be upgraded to future SIMPLE modules to provide improved performance, functionality and/ or reduced cost with minimum adaptation of existing product designs.

The INT55MX Turbo SIMPLE module is based on the Intellon INT5500 baseband and INT1200 AFE ICs. The host interface to the module is optionally MII PHY for interconnection to microcontrollers or Ethernet controllers or MII Host/DTE for connection to an Ethernet PHY. Spectral shaping of the output signal is optimized for wall-module applications or applications requiring AC/ DC line cord via firmware configuration settings.

The INT55MX SIMPLE module is connected to the host system using Intellon's proprietary SIMPLE PowerBusTM architecture. SIMPLE PowerBusTM provides all the required interface signals between the module and the host system on a single 40-pin connector. This connector allows the module to be easily installed or removed if a socket is used on the host board, or the module may be directly soldered onto the host board for reduced cost. Options are also provided for vertical mount of the module, requiring minimum host board area, or horizontal mount of the module for use in low profile applications.

The INT55MX SIMPLE Module is based on Intellon's turbo chipset, INT5500CS. The module provides two interfaces, via a pin out option:

- **INT55MX (PHY Option):** An MII (IEEE 802.3u 1995, Paragraph 22) PHY interface for interconnection to microcontrollers or Ethernet controllers. The INT55MX (PHY Option) is selected by connecting MODE0 pin to VDD.
- **INT55MX (Host/DTE Option):** An MII Host/DTE interface (IEEE 802.3u 1995, Paragraph 22) for interconnection to an Ethernet PHY. The INT55MX (Host/DTE Option) is selected by connecting MODE0 pin to VSS.

2. INT55MX Simple Module Pin I/O

Pin No.	Pin Name	Pin No.	Pin Name
1	25MHZ	21	MII TXD0
2	KEY	22	MII TXD1
3	VDD_C	23	MII_TXD2
4	VSS	24	MII_TXD3
5	LINE_SYNC	25	VSS
6	MODE0	26	PHY_ADRSEL1/ GPIO2*
7	MII_RXD3	27	PHY_ADRSEL2/ GPIO3*
8	MII_RXD2	28	MII_MDIO
9	MII_RXD1	29	MII_MDCLK
10	MII_RXD0	30	VDD
11	MII_RXDV	31	VDD
12	MII_RXCLK	32	RESET_N
13	MII_CRS	33	LED2/ GPIO1*
14	MII_RXER	34	LED1/ GPIO4*
15	VSS	35	VSS
16	GPIO6*	36	TX_P
17	MII_TXER	37	TX_N
18	MII_TXCLK	38	RX_N
19	MII_TXEN	39	RX_P
20	MII_COL	40	VAA

* INT5500 GPIO/ LED pins. Refer to INT5500 IC technical data sheet for further details.

4.0	
40	
39	VAA
38	RX_P
37	RX N
31	TX_N
36	
36 35 34	TX_P
34	VSS
33	LED1
<u> </u>	LED2
<u>32</u>	RESET N
31	—
30	VDD
29	VDD
23	MII_MDCLK
<u> 20</u>	MII MDIO
28 27	—
26	PHY_ADRSEL2
25	PHY_ADRSEL1
24	VSS
24	MII TXD3
23	MII TXD2
22	
<u>22</u> 21	MII_TXD1
20	MII_IXD0
19	MII_COL
	MII TXEN
18	MII TXCLK
17	—
16	MII_TXER
15	GPI06
14	VSS
	MII_RXER
13	MII CRS
12	
11	MII_RXCLK
10	MII_RXDV
9	MII_RXD0
	MII [¯] RXD1
8	MII RXD2
7	
6	MII_RXD3
5	MODE0
	LINE SYNC
4	VSS
3	VDD_C
5 4 3 2	
个	KEY
	25MHz

INT55MX SIMPLE Module

Figure 1. INT55MX Pinout

Notes:

• Pin 2 is used to key the module connector for proper insertion.

2.1. MII PHY Option

INT55MX SIMPLE Module MII PHY option is selected by connecting the MODE0 to VDD. Following table provides the pin number assignment when INT55MX module is configured for PHY mode.

Pin No.	Pin Name	Function
1	25MHz	25MHz clock output
2	KEY	Unused
3	VDD_C	Core +1.8V DC with respect to ground
4	VSS	Ground Reference
5	LINE_SYNC	AC line zero-cross detect signal
6	MODE0	Mode Select Bit (Tie to VDD for PHY option)
7	MII_RXD3	MII Receive Data bit 3
8	MII_RXD2	MII Receive Data bit 2
9	MII_RXD1	MII Receive Data bit 1
10	MII_RXD0	MII Receive Data bit 0
11	MII_RXDV	MII Receive Data Valid
12	MII_RXCLK	MII Receive Clock
13	MII_CRS	MII Carrier Sense
14	MII_RXER	MII Receive Error
15	VSS	Ground Reference
16	GPIO6	INT5500 IC GPIO6 pin
17	MII_TXER	MII Transmit Error
18	MII_TXCLK	MII Transmit Clock
19	MII_TXEN	MII Transmit Enable
20	MII_COL	MII Collision Detect
21	MII_TXD0	MII Transmit Data Bit 0
22	MII_TXD1	MII Transmit Data Bit 1
23	MII_TXD2	MII Transmit Data Bit 2
24	MII_TXD3	MII Transmit Data Bit 3
25	VSS	Ground Reference
26	PHY_ADRSEL1	MII mgmt address bit 0
27	PHY_ADRSEL2	MII mgmt address bit 1
28	MII_MDIO	MII mgmt data I/ O
29	MII_MDCLK	MII mgmt data clock
30	VDD	+3.3 VDC with respect to ground
31	VDD	+3.3 VDC with respect to ground
32	RESET_N	Resets all Module logic when low
33	LED2	LED Driver Output - Indicates a network link/ activity the PL interface (default setting)
34	LED1	LED Driver Output – indicates Power Good (default setting)
35	VSS	Ground Reference
36	TX_P	Analog Transmit Output to Coupler
37	TX_N	Analog Transmit Output to Coupler
38	RX_N	Analog Receive Input from Coupler
39	RX_P	Analog Receive Input from Coupler
40	VAA	+7.5V DC with respect to ground

2.2. Pin Descriptions by Group

Group	Pin No	Signal Name	Description	I/O
PHY Opt				
This option is MII	selected when Me 10	ODE0 is connected to VDD. MII RXD0	MII Receive Data	0
14111	9	MIL RXD1	Will Receive Data	0
	8	MII RXD2	Data is transferred from the IC across	
	7	MII_RXD3	these four lines one nibble at a time.	
	12	MII_RXCLK	MII Receive Clock	0
			The Receive Clock is synchronous to the data and is continuous. This clock operates at 25 MHz.	
	11	MII RXDV	MII Receive Data Valid	0
		_	This Signal indicates that the data on the MII_RXD[3:0] pins are valid.	
-	14	MII_RXER	MII Receive Error	0
			The MII_RXER signal indicates that an error has occurred during frame reception.	
	20	MII_COL	MII Collision Detect	0
			The MII Collision Detect Signal indicates to the MAC that a collision has occurred on the MII interface. MII_COL is an asynchronous output signal.	
	21	MII_TXD0	MII Transmit data	Ι
	22	MII_TXD1		
	23	MII_TXD2	Data is transferred to the IC across the	
-	24	MII_TXD3	four lines one nibble at a time.	
	18	MII_TXCLK	MII Transmit Clock The Transmit Clock outputs a continuous	0
-	19	MII_TXEN	clock. This clock operates at 25MHz. MII Transmit Enable	I
			The MII Transmit Enable signal indicates that valid data is present on the MII_TXD[3:0] pins.	
	13	MII_CRS	MII Carrier Sense	0
	17	MIL TYER	The MII Carrier Sense signal is asserted within 30 MII clocks after MII_TXEN indicates a TX frame is being sent by the local host. MII CRS stays true until the entire TX frame is loaded into an internal buffer and a new buffer is allocated to the MII TX interface. This signal should be used monitored by the MII TX host. A new MII TX frame should not be sent until MII CRS returns to false to prevent TX buffer overflows. MII_CRS is an asynchronous output signal.	T
	17	MII_TXER	MII Transmit Error	Ι
			Assertion of this signal causes intentionally bad data to be transmitted. The MII interface will discard any incoming frame received when if this signal is asserted while MII_TXEN is true.	

Group	Pin No	Signal Name	Description	I/O
	28	MII_MDIO	MII Management Data Input/Output The MII_MDIO signal is a bi-directional data pin for the Management Data Interface (MDI).	I/O
	29	MII_MDCLK	MII Management Data Clock The MII MDCLK signal is a clock	Ι
			reference for the MII_MDIO signal.	
	26	PHY_ADRSEL1	Address Select 0 Used to compare against the upper two	Ι
	27		bits of MDI Address. Address Select 1	
	27	PHY_ADRSEL2	Used to compare against the upper two bits of MDI Address.	Ι
	1	25MHZ	25MHZ Clock Output	0
General C	Groups			
Control	5	LINE_SYNC	AC line zero-cross detect signal	Ι
	16	GPIO6	The pull-up/ pull-down values is latched as Boot Source upon power-up/ reset. Tie to VSS for normal operation.	I/O
LEDs	34	LED1	LED Driver Output – Indicates Power Good (default setting)	0
	33	LED2	LED Driver Ouput – Indicates network link/ activity on the PL interface (default setting)	0
Reset	32	RESET_N	Resets all module logic when low	Ι
AFE	36	TX_P	Analog Transmit Output (Complimentary)	0
	37	TX_N	Analog Transmit Output	0
	38	RX_N	Analog Receive Input	Ι
	39	RX_P	Analog Receive Input (Complementary)	Ι
Power &	4,15,25,35	VSS	Ground	I
Ground	30,31	VDD	+3.3V DC with respect to VSS	I
	3	VDD_C	+1.8V DC with respect to Ground	I
	40	VAA	+7.5V DC with respect to Ground	I
Mode Select	6	MODE0	Mode Select Pin Tie to VDD for PHY option.	Ι
NC	2	KEY	Unused	

2.3. Host/ DTE Option

INT55MX SIMPLE Module Host/DTE option is selected by connecting the MODE0 to VSS. Following table provides the pin number assignment when INT55MX module is configured for HOST/DTE mode.

Pin No.	Pin Name	Function
1	25MHz	25MHz clock output
2	KEY	Unused
3	VDD_C	Core +1.8V DC with respect to Ground
4	VSS	Ground Reference
5	LINE_SYNC	AC line zero-cross detect signal
6	MODE0	Mode Select Bit (Tie to VSS for Host/ DTE option)
7	MII_RXD3	MII Receive Data bit 3
8	MII_RXD2	MII Receive Data bit 2
9	MII_RXD1	MII Receive Data bit 1
10	MII_RXD0	MII Receive Data bit 0
11	MII_RXDV	MII Receive Data Valid
12	MII_RXCLK	MII Receive Clock
13	MII_CRS	MII Carrier Sense
14	MII_RXER	MII Receive Error
15	VSS	Ground Reference
16	GPIO6	INT5500 IC GPIO6 pin
17	MII_TXER	MII Transmit Error
18	MII_TXCLK	MII Transmit Clock
19	MII_TXEN	MII Transmit Enable
20	MII_COL	MII Collision Detect
21	MII_TXD0	MII Transmit Data Bit 0
22	MII_TXD1	MII Transmit Data Bit 1
23	MII_TXD2	MII Transmit Data Bit 2
24	MII_TXD3	MII Transmit Data Bit 3
25	VSS	Ground Reference
26	GPIO2	Connect to VDD through a $3.3K\Omega$ resistor or lower
27	GPIO3	Connect to VSS through a $3.3K\Omega$ resistor or lower
28	MII_MDIO	MII mgmt data I/ O
29	MII_MDCLK	MII mgmt data clock
30	VDD	+3.3 VDC with respect to ground
31	VDD	+3.3 VDC with respect to ground
32	RESET_N	Resets all Module logic when low
33	LED2	LED Driver Output - Indicates a network link/ activity the PL interface (default setting)
34	LED1	LED Driver Output – indicates Power Good (default setting)
35	VSS	Ground Reference
36	TX_P	Analog Transmit Output to Coupler
37	TX_N	Analog Transmit Output to Coupler
38	RX_N	Analog Receive Input from Coupler
39	RX_P	Analog Receive Input from Coupler
40	VAA	+7.5V DC with respect to Ground

2.4. Pin Descriptions by Group

Group	Pin No	Signal Name	Description	I/O
HOST/I	DTE Option			
This option is	s selected when MC			
MII	10	MII_RXD0	MII Receive Data	Ι
	9	MII_RXD1		
	8	MII_RXD2	Data is transferred from the IC across these four	
-	7	MII_RXD3	lines one nibble at a time.	
	12	MII_RXCLK	MII Receive Clock	I
			The Receive Clock is synchronous to the	
			incoming data and is continuous. This clock	
			operates at 25 MHz (100BaseT) or 2.5 MHz	
			(10BaseT).	
-	11	MII RXDV	MII Receive Data Valid	I
			Mill Robol vo Duta Valia	1
			This Signal indicates that the data on the	
			MII_RXD[3:0] pins are valid.	
	14	MII_RXER	MII Receive Error	Ι
			The MII_RXER signal indicates that an error	
			has occurred during frame reception.	
	20	MII_COL	MII Collision Detect	Ι
			The MII Collision Detect signal indicates that a	
			collision has been detected on the MII interface	
			and shall remain asserted while the collision	
-	21	MII TXD0	condition persists. MII Transmit data	0
	21	MIL TXD1	Will Hanshilt data	0
	22	MII_TXD1 MII_TXD2	Data is transferred to the IC across the four lines	
	23	MII_TXD2 MII_TXD3	one nibble at a time.	
-	18	MII TXCLK	MII Transmit Clock	Ι
		_		
			This clock operates at 25MHz (100BaseT) or	
_			2.5MHz (10BaseT).	
	19	MII_TXEN	MII Transmit Enable	0
			The MII Transmit Enable signal indicates that	
-	12	MIL CDC	valid data is present on the MII_TXD[3:0] pins. MII Carrier Sense	т
	13	MII_CRS	Mill Carrier Sense	Ι
			The MII Carrier Sense signal is asserted when	
			either the transmit or receive medium is non-	
			idle.	
-	17	MII TXER	MII Transmit Error	0
		_		
			Assertion of this signal causes intentionally bad	
_			data to be transmitted.	
	28	MII_MDIO	MII Management Data Input/Output	I/O
			The MII_MDIO signal is a bi-directional data	
F	20		pin for the Management Data Interface (MDI).	
	29	MII_MDCLK	MII Management Data Clock	0
			The MIL MDCLK signal is a clock reference for	
			The MII_MDCLK signal is a clock reference for the MII_MDIO signal	
			the MII_MDIO signal.	

Group	Pin No	Signal Name	Description	I/O
	1	25MHZ	25 MHz clock to Ethernet PHY IC.	0
General	Groups			
Control	5	LINE SYNC	AC line zero-cross detect signal	Ι
	16	GPIO6	The Pull-up/ Pull –down values is latched as Boot Source upon power-up/ reset. Tie to VSS for normal operation.	I/O
LEDs	34	LED2	LED Driver Output - Indicates a network link/ activity the PL interface (default setting)	0
	33	LED1	LED Driver Output – indicates Power Good (default setting)	0
Reset	32	RESET_N	Resets all module logic when low.	Ι
AFE	36	ТХ Р	Analog Transmit Output (Complimentary)	0
	37	TX_N	Analog Transmit Output	0
	38	RX_N	Analog Receive Input	Ι
	39	RX_P	Analog Receive Input (Complementary)	Ι
Power &	4,15,25, 27, 35	VSS	Ground	Ι
Ground	26,30,31	VDD	+3.3V DC with respect to Ground	Ι
	3	VDD_C	+1.8V DC with respect to Ground	Ι
	40	VAA	+7.5V DC with respect to Ground	Ι
Mode Select	6	MODE0	Mode Select Pin Tie to VSS for PHY option.	Ι
NC	2	NC	Unused	

3. INT55MX SIMPLE Module Specifications

3.1. Electrical Specifications

Electrical specifications for the INT55MX module are presented in Table 1.

Parameter	Min	Тур.	Max	Unit
VDD Supply Voltage	3.0	3.3	3.6	V
VDD Supply Current		310	380	mA
VDD_C Supply Voltage	1.62	1.8	1.98	V
VDD Supply Current		200		mA
VAA Supply Voltage	6.0	7.5*	12	V
VAA Supply Current		25	30	mA

Table 1: Electrical Specifications

* Typical voltage for direct plug-in type applications

The typical power consumption for the INT55MX SIMPLE module is 1.57 W.

3.2. Mechanical Specification

Placement of the INT55MX Module's major component blocks is presented in Figure 2.

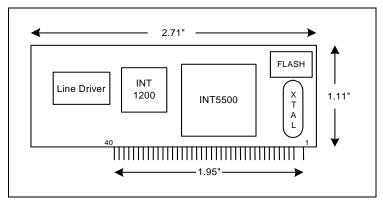


Figure 2: INT55MX SIMPLE Module Component Placement

4. INT55MX SIMPLE Module Design Considerations

4.1. Crystal Considerations

The INT5500 IC on the SIMPLE module requires close clock accuracy for optimum power line performance. A 3rd overtone 50MHz crystal oscillator has been chosen for the module clock source to provide high accuracy at minimum cost. Specifications for the crystal are detailed in Table 2.

Parameter	Specification	Units
Mode	3 rd Overtone	
Frequency	50.000	MHz
Frequency Tolerance (25°C)	+/-10 (Max)	ppm
Aging and Temperature Tolerance	+/-15 (Max)	ppm
Load Capacitance	18	pF
ESR (Max)	80	Ohm
СО	4.1 – 7 (Max)	pF
Operating Temperature Range	-10 → +70	°C
Storage Temperature	-30 → +85	°C
Case Style	CSM-7 (4.3mm)	
Manufacturer Part Number	ECS-500-18-5P-CK-TR	

Table 2: INT55MX SIMPLE Module Crystal Specification

4.2. Line Driver

The line driver of the INT55MX SIMPLE module is Texas Instrument's OPA2674I-14D line drive amplifier. The amplifier is powered through a filter from the bus of +7.5V supply. Power supply current for the line driver is approximately 25mA when transmitting into a 5 Ω AC load. The input impedance of the amplifier should be set to 50 ohms so that its matches the output impedance of the transmit filter.

4.3. Non-Volatile Memory

The INT5500 IC on the SIMPLE module provides a serial peripheral interface (SPI) for downloading the run-time MAC software from an on-board flash memory device. The INT5500 acts as a master on the SPI. Flash memory devices appropriate for the INT55MX SIMPLE module are listed in Table 3.

Table 3:	Supported	Flash	Devices
----------	-----------	-------	---------

Part Number	Memory Type	Memory Size (bits)	Vendor
M25P10-A	Flash	1 M	STMicroelectronics *

4.4. INT55MX SIMPLE Module On-board Configuration Straps

The INT55MX SIMPLE module uses GPIO pins for LED connections, the power-on state of these GPIO pins must be taken into account when configuring these pins. Refer to the INT5500 Turbo IC technical data sheet for correct LED connections.

4.5. Application Specific Hardware Changes

Applications with AC/ DC cord require boosting the transmit power of the HomePlug signal. This may be achieved by adjusting the coupling transformer turns ratio and/or changing the gain settings of the transmit amplifier (refer to **Creating INT55MX SIMPLE Module based HomePlug products, 26002802**, for more details).

Table 4 lists out the different values of R52 resistor (transmit amplifier gain setting resistor) required for different applications.

Application	Resistor R52 value (Ω)
Direct Plug-in	62
Six foot AC cord	43.2
DC cord	62

Table 4: INT55MX Applications Specific Changes

4.6. Regulatory Compliance Considerations

Regulatory compliance of PLC products generally covers two areas:

- Safety (UL, CSA, etc.)
- Emissions (FCC Part 15, CE, etc.)

Safety in INT55MX SIMPLE Module designs will typically involve power supply design and PLC coupling circuitry design. If an external power supply /coupler is used, the UL safety requirements will typically only impact the adapter and not the host device. If AC line voltage is brought into the host device, then all UL requirements for the class of host device must be met.

Verification of emissions requirements for INT55MX Module design requires measurement of potential interference from the PLC signal applied to the power line as well as radiated and conducted emissions due to the digital circuitry in the host device. Conformance with the HomePlug PSD mask for the device transmit signal will generally allow the device to meet power line carrier device requirements. Normal care should be exercised in the design and layout of the host device printed circuit board and mechanical design to ensure compliance with radiated and conducted emissions rules.

5. INT55MX SIMPLE Module Connector

The INT55MX module is connected to the host system using Intellon's proprietary SIMPLEPowerBus[™] architecture. SIMPLEPowerBus[™] utilizes an industry standard header using 0.018" square pins on 0.050" centers. This connector provides for easy insertion and removal of module devices using a mating female header. Alternatively, the device may be soldered directly to the host board.

Connector options are available to allow the INT55MX to be mounted in a vertical orientation or in a horizontal orientation. A right-angle header may be used to mount the module vertically as shown in Figure 3. This module orientation minimizes the host board space require by the module. A straight header may be used to mount the module horizontally as shown in Figure 4. This orientation would be used in applications requiring a low-profile footprint.

Pin 2 of the connector is used as a key for proper orientation of the module. This pin is deleted from the module connector and a "plug" inserted in the female host connector.

Connector part numbers and source for the INT55MX module are listed in Table 5.

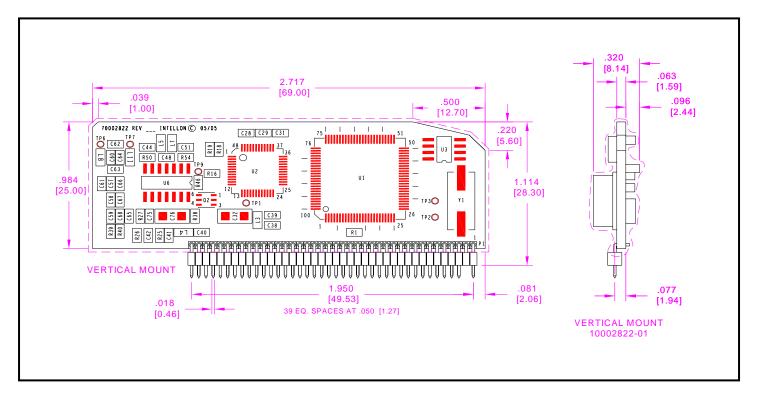


Figure 3: INT55MX Module with Right-Angle Connector

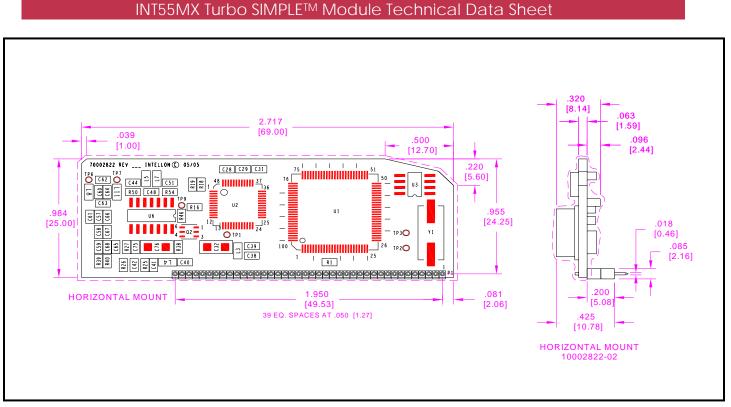


Figure 4: INT55MX Module with Horizontal Connector

Connector	Source/Part Number
Female Host Connector	Samtec P/N SLM-140-01-T-S
Host Connector Plug	Samtec P/N TP-12

Table 5: SIMPLEPowerBusTM Connector Specification

5.1. INT55MX SIMPLE Module Package Specifications

Table 6 presents basic board specifications for the module PCB.

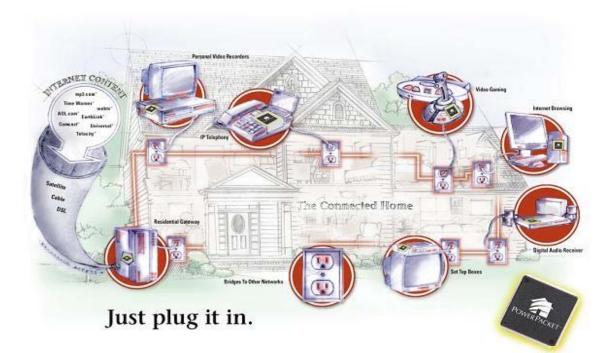

Specification	Value
Board Dimensions	2.71" (l) x 1.11" (h) x 0.35" (w)
Mounting Height (Vertical Mount)	1.2" No Host Connector,
	1.3" with Host Connector
Mounting Height (Horizontal Mount)	0.38" No Host Connector,
	0.56" with Host Connector

Table 6. INT55MX Module Package Specification

6. Revision History

Revision	Modifications	
1	Advance Release	

Table 7: Revision History

Intellon Corporation

5100 West Silver Springs Blvd. Ocala, FL 34482 (352) 237-7416 (352) 237-7616 (Fax)

San Jose Office

1731Technology Dr., Ste 560 San Jose, CA 95110 (408) 501-0320 (408) 501-0323 (Fax)

Toronto Office

144 Front Street West, Suite 600 Toronto, Ontario M5J 2LJ CANADA (416) 217-0451 (416) 217-0459 (fax)

www.intellon.com

Intellon: The World Leader in Powerline Networking

- ✓ Leading contributor to HomePlug AV specification
- Patented technology chosen as the basis for HomePlug 1.0
- ✓ Complete HomePlug 1.0 and AV solutions from a single supplier
- ✓ World leader in HomePlug IC sales and product enablement
- ✓ Over 5 million power-line ICs shipped
- ✓ Most real-world experience in power-line networking

©2005 Intellon Corporation. Intellon Corporation reserves the right to make changes to this document without notice. Intellon Corporation makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. Intellon Corporation assumes no liability arising out of the application or use of any product or circuit. Intellon Corporation specifically disclaims any and all liability, including without limitation consequential or incidental damages.

Intellon, PowerPacket, and No New Wires are registered trademarks of Intellon Corporation. HomePlug is a registered trademark of the HomePlug Powerline Alliance.